Case report

Use of dronabinol (delta-9-THC) in autism: A prospective single-case-study with an early infantile autistic child

René Kurz, Kurt Blaas

Lindengasse 27/10, 1070 Wien, Vienna/Austria

Abstract

Objective: To evaluate the effectiveness of dronabinol (delta-9-THC) as supplementary therapy in a child with autistic disorder.

Methods: A child who met the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders) criteria for a diagnosis of autistic disorder and who took no other medication during the observation time was included in an open and uncontrolled study. Symptom assessment was performed using the Aberrant Behavior Checklist (ABC) before and after six months of medical treatment.

Result: Compared to baseline, significant improvements were observed for hyperactivity, lethargy, irritability, stereotypy and inappropriate speech at follow-up (p=0.043).

Conclusion: This study showed that the use of dronabinol may be able to reduce the symptoms of autism.

Keywords: early infantile autism, autistic disorder, dronabinol, cannabinoid

Introduction

Autistic Disorder (also referred to as early infantile autism, childhood autism, Kanner-Syndrome) is a pervasive developmental disorder characterized by marked impairment in social interaction, delayed language, and restricted repertoire of activity and interests (DSM-IV criteria for diagnosis of autistic disorder, 2007) [8][14]. Beside these core symptoms autistic children often show aggression against others and self-injurious behaviour, also have sleep problems and eating disorders. Early infant autism affects 1 of 2000 children, with boys affected three times more often than girls. Autism does not equate with mental retardation, but intelligence is frequently limited (intelligence quotient (IQ) below 70). One quarter of autistic children achieve good results on IQ tests, termed ‘high functional autism’. The cause of autism is still not fully explored, but seems to be multifactorial (including genetic, environmental and neurobiochemical disorders) [19]. Cognitive Behavioural Therapy is the gold standard in treating children with early infant autism and is supported by occupational therapy, physical therapy and pharmacological intervention (e.g. antipsychotic drugs) [4][9][12][13][17][18].

Dronabinol, or tetrahydrocannabinol / Δ9-THC, is a purified cannabinoid. The main accepted field of use is in oncology to reduce nausea and in AIDS to increase appetite, but has also been used in chronic pain patients, inflammatory bowel diseases (Crohn’s disease, ulcerative colitis) and multiple sclerosis for muscle relaxation and neuropathic pain [9]. It may also be used for major depression and Tourette’s syndrome [1][6][11].

To date there have been no reports of the use of cannabinoids in autism. However, in internet blogs and discussion forums there are many reports of parents who have tried THC for their autistic children, but without medical monitoring and inappropriate administration.
Kurz & Blaas
Cannabinoids
Vol 5, No 4
November 21, 2010

Table 1. Wilcoxon Rank Sum Test for samples / pre- & post-values

<table>
<thead>
<tr>
<th>Subscales</th>
<th>Before (May 2009)</th>
<th>After (November 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritability</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>Lethargy</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>Stereotype</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>47</td>
<td>20</td>
</tr>
<tr>
<td>Inappropriate speech</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>P-value for Wilcoxon rank sum test</td>
<td>0.04311</td>
<td></td>
</tr>
</tbody>
</table>

There are well known alterations of neurotransmitters in autistic people especially in the cerebral cannabinoid receptor system [5]. We therefore asked whether dronabinol could safely be used in autism and what outcomes can be achieved within an observation period of six months.

Methods

This study involved a six year old boy with early infant autism (F84.0), who was diagnosed in the Pediatric Clinic Graz at the age of three. The diagnosis had been made using DSM-IV criteria (American Psychiatric Association, Diagnostic Manuel of Mental Disorders, 4th Edition) and confirmed by ADOS (Autism Diagnostic Observation Schedule) and ADI (Autism Diagnostic Interview) [2][3]. During the six months of follow-up the child did not start any new therapies or change existing assistance measures.

At beginning and end of this study symptom severity was determined by using the ABC (Aberrant Behavior Checklist) [7]. This is a questionnaire consisting of 52 questions with a rating scale from zero to three (0 ... no problem, 3 ... severe problem) filled out by an examiner together with the parents. Results are stratified in five subscales "hyperactivity" (min.0/max.48), "lethargy"(min.0/max.48), "stereotype"(min.0/max.21), "irritability"(min.0/max.45) and "inappropriate speech"(min.0/max.12). Analysis was done with SPSS (SPSS 2002-10) by using the Wilcoxon Rank Sum Test. Statistical significance was set with p ≤ 0.05.

The therapy used was dronabinol drops (dronabinol solved in sesame oil). Initial dosage was one drop (0.62mg) in the morning which was gradually increased from day to day.

Results

During the six months follow-up the subject received only dronabinol therapy. The maximum tolerated dose effect was reached at 2-1-3 (two drops in the morning, one drop midday, three drops in the evening), total daily dose of 3.62 mg dronabinol. No adverse effects were reported during treatment.

The ABC subscales significantly changed over six month (p= 0.04) (see Table 1). Hyperactivity decreased by 27 points, lethargy was reduced by 25 points and irritability by 12 points. Stereotypic behaviour decreased by 7 points and inappropriate speech improved by 6 points (see Figure 1).

Discussion

This uncontrolled single case study suggests that dronabinol may reduce symptoms in early infant autism.
This may have been achieved by modifying cannabino-
id levels in the central nervous system. Larger con-
trolled studies are needed to explore this effect. Dron-
abinol will likely not replace cognitive behavioural
therapy with early intervention, but we believe that as
an additional support it may be effective and better
tolerated than many existing antipsychotic drugs.

References
1. Bisogno T, Di Marzo V. Cannabinoid Receptors
and Endocannabinoids: Role in Neuroinflam-
many and Neurodegenerative Disorders. CNS Neu-
rol Disord Drug Targets. 2010 [in press]
2. Bölte S, Poustka F. Diagnostic Observation Scale
for Autistic Disorders: initial results of reliability
and validity. Z Kinder Jugendpsychiatr Psycho-
3. Bölte S, Poustka F. Psychodiagnostic instruments
for the assessment of autism spectrum disorders.
Z Kinder Jugendpsychiatr Psychother 2005;
33(1):5-14
4. Campbell JM. Efficacy of behavioral interven-
tions for reducing problem behavior in persons
with autism: a quantitative synthesis of single-
120-38.
5. Chakrabarti B, Kent L, Suckling J, Bullmore E,
Baron-Cohen S. Variations in the human can-
nabinoid receptor (CNR1) gene modulate striatal
responses to happy faces. Eur J Neurosci 2006;
23(7):1934-8.
6. Crippa JA, Zuardi AW, Hallak JE. Therapeutical
use of the cannabinoids in psychiatry. Rev Bras
7. Demb HB, Brier N, Huron R, Tomor E. The Adoles-
cent Behavior Checklist: normative data and
sensitivity and specificity of a screening tool
for diagnosable psychiatric disorders in adoles-
cents with mental retardation and other develop-
151-65.
8. Dover CJ, Le Couteur A. How to diagnose au-
9. Eikeseth S, Smith T, Jahr E, Eldevik S. Outcome
for children with autism who began intensive be-
havioral treatment between ages 4 and 7: a com-
parison controlled study. Behav Modif 2007;
31(3):264-78.
Cannabinoids 2010;5(1):1-3
T, Falkai P, Roessner V. Oral Delta 9-
tetrahydrocannabinol improved refractory Gilles
de la Tourette syndrome in an adolescent by in-
creasing intracortical inhibition: a case report. J
12. Kurz R, Muchitsch E, Feucht M. Cognitive Be-
havioral Therapy in Children with Autistic Dis-
order A Prospective Long-time Observational
Study. 2010, [in press]
13. Myers SM, Johnson CP; American Academy of
Management of children with autism spectrum
14. Pardo CA, Eberhart CG. The neurobiology of
15. Patterson SY, Smith V, Jelen M. Behavioural
intervention practices for stereotypic and repeti-
tive behaviour in individuals with autism spec-
trum disorder: a systematic review. Dev Med
16. Posey DJ, McDougle CJ. Pharmacotherapeutic
management of autism. Expert Opin Pharma-
17. Remington B, Hastings RP, Kovshoff H, degli
Espinosa F, Jahr E, Brown T, Alsford P, Lemaic
M, Ward N. Early intensive behavioral interven-
tion: outcomes for children with autism and their
parents after two years. Am J Ment Retard
18. Sallows GO, Graupner TD. Intensive behavioral
treatment for children with autism: four-year out-
110(6):417-38.
19. Trottier G, Srivastava L, Walker CD. Etiology of
infantile autism: a review of recent advances in
genetic and neurobiological research. J Psychiatry
Neurosci 1999;24(2):103-15. Di Marzo V, De Pet-
roccellis L. Plant, synthetic, and endogenous can-
nabinoids in medicine. Annu Rev Med 2006;
57:553-74.