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Abstract: Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in
cancer pathophysiology in several ways, including tumor growth and progression, peritumoral
inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are
deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in
cancer patients, which was mimicked by similar changes in rodent models of local and metastatic
cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the
context of tumor growth and metastasis.
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1. Introduction

Endocannabinoids (eCBs) constitute a growing number of lipid signaling molecules, the most
popular being anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They are involved in cancer
pathophysiology in several ways (Figure 1), including tumor growth and progression [1], immune
(in)tolerance, inflammation [2], nausea [3] and cancer pain [4,5]. Our recent work [6] revealed that the
endocannabinoid profiles are deranged during cancer, particularly in metastatic cancer, to an extent
that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked
by similar changes in rodent models of local and metastatic cancer, suggesting that the monitoring
of endocannabinoid profiles might be useful for assessing the individual course of the disease and,
possibly, that the derangement of the profiles plays a functional role for cancer progression, potentially
giving rise to supportive therapeutic interventions.

2. Rise of 2-AG in the Tumor Environment and in Plasma

Endocannabinoids are produced in several peripheral tissues resulting in cell-type and
location-specific profiles so that the eCB pattern in the tumor microenvironment depends on the
tumor’s origin and site of primary growth and metastasis. We showed that tumor growth is associated
with an increase of 2-arachidonoylglycerol (2-AG) both at the site of the primary tumor and in
plasma [6]. It steadily increased over the course of cancer development and metastasis, suggesting
that the growing tumor and circulating metastatic tumor cells secrete large amounts of 2-AG, sufficient
enough to manifest in high plasma concentrations. The 2-AG increase is likely contributed by activated
immune cells, which are a major source of 2-AG in the periphery at sites of inflammation [7,8]. In the
tumor microenvironment 2-AG elicits CB2 receptor signaling of invading immune cells, which may
trigger a phenotypic switch from aggressive to tumor-tolerant cells [9] and polarization towards the
tumor-helping M2-like macrophages, such as ”tumor associated macrophages” (TAMs) [10]. These
TAMs promote tumor invasiveness and metastasis by releasing metalloproteinases and angiogenic
factors [11].
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Figure 1. Tumor growth causes an increase of 2-arachidonoylethanolamide (2-AG) in tumor tissue and
plasma and a decrease of ethanolamide endocannabinoids anandamide (AEA), oleoylethanolamide
(OEA), palmitoylethanolamide (PEA) because the tumor displaces normal tissue and increases fatty
acid amide hydrolase (FAAH) expression. It is likely that the tumor itself mainly secretes 2-AG. The
endocannabinoids have diverse effects on cannabinoid receptors including the typical cannabinoid
receptor 1 and 2 (CB1, CB2), the orphan G-protein coupled receptors (GPRs) 18, 55, 92 and 119 and
peroxisome proliferator activated receptor (PPAR) gamma and alpha, and AEA also acts on transient
receptor potential family V type 1 (TRPV1), resulting in complex regulation of tumor growth, metastasis,
angiogenesis, polarization of tumor-associated macrophages and dendritic cells, T-cell activation and
cancer pain. Treatment with exo- and endogenous cannabinoids reduced cancer growth in several
rodent models and cell culture experiments [25–31], but CB2 expression of the tumor itself has been
recently associated with poor prognosis in breast cancer [32].

One of the M2-derived pro-angiogenic factors is palmitoylethanolamide (PEA) which acts as
an agonist of endothelial GPR55 receptors [12]. GPR55 is an untypical cannabinoid receptor, which
elicits Rho, Rac and CD42 signaling [13], converging on the regulation of cancer and endothelial cell
migration [14] and tube formation [15]. GPR55 is also activated by 2-AG-ether, a precursor of 2-AG,
which is also known as noladin ether and is likely directly produced and released by the tumor. Further
agonists of GPR55 include lysophospholipids, e.g., lysophosphatidylinositol (LPI) [15,16]. These lipids
are released by aggregating platelets [17] or produced extracellularly by secretory phospholipases
A [18] or D [19]. The latter, also known as autotaxin, attaches to the cell surface of circulating
immune or metastatic tumor cells and uses their membrane lipids as precursors for the production of
lysophosphatidic acids (LPAs) [20,21], which then stimulate tumor cell migration [22] and angiogenesis
via LPA receptors [23]. Vascular cells also express CB1 and GPR18, which mediate vasodilation on
agonist binding [24] and thereby increase the tumor’s blood supply.
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3. Loss of Ethanolamide Endocannabinoids in Tumor Environment and Plasma

Contrary to 2-AG, we have shown that ethanolamide endocannabinoids (eCBs) anandamide
(AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) decrease in the tumor
microenvironment and in plasma [6], likely because the growing tumor displaces normal cells that
produce these eCBs and destroys sensory neuronal fibers that are innervating the tumor [33]. These
terminals are a major source of AEA in the tumor microenvironment, and as long as these terminals
secrete AEA the tumor itself may suppress local cancer pain. The peripheral AEA pool is further
contributed by epithelial cells, keratinocytes and muscle cells that all release AEA on demand [34].
AEA is a full agonist of all kinds of cannabinoid receptors that have been identified including CB1,
CB2, the orphan GPRs 18, 55, 92 (= LPAR5) and 119, and the nuclear receptors PPAR gamma and
alpha [35,36], and transient receptor potential (TRPV1) calcium channels [37]. Most importantly, it
acts as an autocrine agonist of CB1 receptors of the peripheral nerves to control nociception [7] and
as a CB2 agonist to resolve inflammation. Its decline in the tumor environment is associated with an
increase of cancer pain and a deregulation of immune cells.

The 2-AG, OEA and PEA have a narrower spectrum of receptors than AEA [38], which also
holds true for the exogenous cannabis constituents, tetrahydrocannabinol (THC) and cannabidiol
(CBD). Like AEA, both OEA and PEA reciprocally decrease while the tumor mass and metastases
increase [6]. All of these eCBs are primarily metabolized by fatty acid amide hydrolase (FAAH) which
is upregulated in various types of cancer [25,39], suggesting that enhanced degradation contributes to
the loss of production by normal cells. So far, FAAH antagonists have been considered as potential
treatments for cancer pain in rodent models [4], but their potential effects on tumor growth and
the anti-tumoral immune response have not been assessed. However, interestingly the weak FAAH
inhibitor R-flurbiprofen, which leads to a resetting of normal eCB profiles in models of neuropathic
pain and autoimmune disease [40,41], was previously shown to reduce tumor growth in transplant
models in nude mice [42] and in colon or prostate cancer development in APCmin (Adenomatous
Polyposis Coli, multiple intestinal neoplasia) and TRAMP (Transgenic Adenocarcinoma of the Mouse
Prostate) mice [43,44]. Although R-flurbiprofen failed in phase II clinical studies of prostate cancer, its
positive results may encourage testing of FAAH-based combi-treatments for pain and cancer [45].

The primary source of peripheral OEA is the (gut) epithelium, fat and liver [46,47]. It has
been mainly considered as a satiety signal, and consequently as a protector against obesity and
metabolic syndrome [47–49]. Peripheral PEA is likely mainly produced by stromal and immune
cells [50]. Both OEA and PEA do not activate the typical CB1 and CB2 cannabinoid receptors, but act
through the “orphan” cannabinoid GPRs and PPARs: OEA mainly through GPR119, PPAR gamma
and alpha, and PEA mainly through GPR55, GPR18 and PPAR alpha [35,36]. GPR18 and 92 are
highly expressed by immune cells including macrophages, T- and B-cells, and the primary full agonist
N-arachidonoylglycine, NaGly, a metabolite of AEA [51,52], regulates immune functions and cell
migration through these receptors [53,54], suggesting that both may contribute to the fine-tuning of the
tumor-evoked immune response. NaGly is produced by many cells and acts as an endogenous inhibitor
of FAAH and thereby increases AEA, OEA and PEA levels [55] and counteracts the tumor-mediated
loss of these eCBs.

4. Cannabinoid Receptors of Tumor Cells

Depending on the tumor’s origin, the tumor cells themselves express CB1 and CB2, which has been
reviewed elsewhere [56–58], and possibly GPR119, the latter particularly in tumors of epithelial origin.
Cannabinoid-mediated tumor killing was shown to involve mostly CB1 signaling: one path converging
on an increase of ceramides that leads to the endoplasmic reticulum and oxidative stress [1], other
pathways converging on Akt, Erk or MAP kinase inhibition [59,60], AMPK-mediated autophagy [61],
cell cycle inhibition [62], or still unknown receptors and signaling pathways [63]. The expression of
CB1 was identified as a positive prognostic factor for disease-free survival in patients with tongue
cancer [64] but not prostate cancer [65], although prostate cancer cells, like other cancer cells, are killed
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by CB1 or CB2 agonists in vitro [25,66–68]. CB2 expression has been recently associated with a poor
prognosis in Her2/Neu-positive breast cancer, where its presence promoted pro-oncogenic signaling
of Her2 at the level of the tyrosine kinase c-Src [32]. In contract, triple-negative breast cancer cells
(estrogen receptor, progesterone receptor and Her2-negative) were killed by a CB2 agonist [69]. It is
obvious from multiple studies that the co-expression of the cannabinoid receptor with receptors of the
epidermal growth factor receptor (EGFR) or other growth factor families is crucial for the outcome
because the formation of heteromers [32] or signaling crosstalk may reverse normal functions. While
CB1 and CB2 are well studied in the context of cancer, GPR119 is still an “orphan”, although it is
highly expressed in glandular tissue including intestine, pancreas and liver, and its activation leads
to lipolysis, insulin secretion and reduction of food intake [70,71]. It is mainly activated by OEA and
triggers the OEA-evoked satiety signals [70,71].

5. Oleoylethanolamide

OEA concentrations in the plasma of cancer patients were reduced initially but re-raised once
local tumor growth turned into metastatic disease [6]. OEA levels were positively associated with the
number of metastases in cancer patients, and particularly liver metastases caused an increase of OEA
plasma levels, suggesting enhanced secretion from the metastatic liver [6]. To assess the physiologic
relevance of OEA in the context of metastasis, we tested its effects in a migration assay in vitro [6].
High OEA concentrations that are not reached in plasma, but in normal tissue surrounding locally
restricted tumors, inhibited tumor cell migration. Oppositely, low concentrations enhanced tumor cell
proliferation and migration [6], suggesting that the local loss of OEA in the tumor microenvironment
facilitates growth and metastasis and the increase of liver OEA secretion may be interpreted as an
attempt to stop metastasis. However, despite this metastasis-driven increase, plasma levels remained
low compared to those required to stop migration. OEA per se did not qualify as an independent
marker of metastasis but might be indicative of individual progression.

The concentration-dependent opposing effects of low and high OEA may involve actions through
GPR119 and PPARs resulting in opposite pro- or anti-migratory signaling pathways. Besides OEA,
anandamide is a strong agonist of both PPAR alpha and gamma whereas 2-AG and PEA mainly act as
agonists of PPAR alpha [36]. Tumor cells, immune cells and endothelial cells all express PPARs and both
activators and inhibitors were shown to reduce cancer growth or migration [72–74]. Hence, by acting
through PPARs, all endocannabinoids and exogenous cannabinoids may facilitate or inhibit growth
with an unforeseeable outcome. Overall, the net effect of cannabinoid treatment in various models of
cancer was a reduction of cancer development and growth [25–31,59]. However, the opposite was also
observed [75–77]. The complexity of the endocannabinoid system in the tumor microenvironment of
local and metastatic cancer complicates the development of anti-cancer drugs targeting the endogenous
cannabinoid system. Nevertheless, FAAH inhibition may be a logical approach to restore normal eCB
balances [78,79], whereas inhibition of monoacylglycerol lipase (MAGL) and abhydrolase domain
containing 6 (ABHD6) which metabolize 2-AG would instead further shift the balance towards 2-AG.
Consequently, both MAGL and ABDH6 inhibition produced a variable outcome [75,80,81], which,
however, may depend on the tumor’s origin.

6. Exogenous Cannabinoids and Therapeutic Implications

The exogenous cannabinoids THC and cannabidiol (CBD) reduced tumor growth in animal
models [27,31,82–84]. THC acts as an agonist of GPR18, CB1 and CB2 whereas cannabidiol is an
antagonist of GPR55, and an agonist of GPR18 and GPR119. Cannabidol does not act through the
typical CB1 and CB2 receptors. Hence, the combination of THC with CBD, currently available as
oromucosal spray, may favorably combine anti-proliferative CB1-mediated effects and suppression of
GPR55-mediated angiogenesis and reduction of cancer pain [85,86], and by acting through GPR18,
immune cells may be stimulated to migrate towards and kill tumor cells.
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THC-mediated activation of CB2-mediated silencing of macrophages may be a disadvantage in
terms of the tumor growth, and in certain types of cancer, expression of CB2 was associated with a
poor prognosis [32]. On the other hand, CB2 signaling would reduce the surrounding inflammation
and, likely, the reduction of cancer pain contributes to a fortification of the immune system, raising the
idea of a broader use of cannabinoids in cancer (pain) treatment.

However, exogenous cannabinoids cannot replace or restore endogenous cannabinoid profiles,
suggesting that drugs targeting the degradation of ethanolamide endocannabinoids may have
additional therapeutic value. In addition, the monitoring of individual endocannabinoid profiles over
time may be useful for an assessment of disease progression and identification of patients who would
likely profit from an eCB-directed therapy.

Acknowledgments: This review was supported by the Deutsche Forschungsgemeinschaft (CRC1039 A3 to IT)
and the LOEWE-Center “Translational Medicine & Pharmacology”.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

eCB, endocannabinoid; AEA, anandamide; OEA, oleoylethanolamide; PEA, palmitoylethanolamide;
2-AG, arachidonoylethanolamide; FAAH, fatty acid amide hydrolase; LPI, phosphatidylinositol;
NaGly, N-arachidonoylglycine; GPR, G-protein coupled receptor; CB1, CB2, cannabinoid receptor 1
and 2; PPAR, peroxisome proliferator activated receptor; TRPV1, transient receptor potential family
V type 1. THC, tetrahydrocannabinol; AMPK, adenosine monophosphate-activated kinase; MAGL,
monoacylglycerol lipase; ABHD6, abhydrolase domain containing 6; EGFR epidermal growth factor
receptor; Her2/Neu, human epidermal growth factor receptor 2, erb-B2.

References

1. Galve-Roperh, I.; Sanchez, C.; Cortes, M.L.; del Pulgar, T.G.; Izquierdo, M.; Guzman, M. Anti-tumoral action
of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase
activation. Nat. Med. 2000, 6, 313–319. [PubMed]

2. Di Marzo, V.; Melck, D.; de Petrocellis, L.; Bisogno, T. Cannabimimetic fatty acid derivatives in cancer and
inflammation. Prostaglandins Lipid Mediat. 2000, 61, 43–61. [CrossRef]

3. Sharkey, K.A.; Darmani, N.A.; Parker, L.A. Regulation of nausea and vomiting by cannabinoids and the
endocannabinoid system. Eur. J. Pharmacol. 2014, 722, 134–146. [CrossRef] [PubMed]

4. Khasabova, I.A.; Khasabov, S.G.; Harding-Rose, C.; Coicou, L.G.; Seybold, B.A.; Lindberg, A.E.;
Steevens, C.D.; Simone, D.A.; Seybold, V.S. A decrease in anandamide signaling contributes to the
maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J. Neurosci. 2008,
28, 11141–11152. [CrossRef] [PubMed]

5. Brown, I.; Cascio, M.G.; Rotondo, D.; Pertwee, R.G.; Heys, S.D.; Wahle, K.W. Cannabinoids and omega-3/6
endocannabinoids as cell death and anticancer modulators. Prog. Lipid Res. 2013, 52, 80–109. [CrossRef]
[PubMed]

6. Sailler, S.; Schmitz, K.; Jaeger, E.; Ferreiros, N.; Wicker, S.; Zschiebsch, K.; Pickert, G.; Geisslinger, G.; Walter, C.;
Tegeder, I.; et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice
and humans. Oncoscience 2014, 1, 272–282. [CrossRef] [PubMed]

7. Agarwal, N.; Pacher, P.; Tegeder, I.; Amaya, F.; Constantin, C.E.; Brenner, G.J.; Rubino, T.; Michalski, C.W.;
Marsicano, G.; Monory, K.; et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid
receptors in nociceptors. Nat. Neurosci. 2007, 10, 870–879. [CrossRef] [PubMed]

8. Centonze, D.; Battistini, L.; Maccarrone, M. The endocannabinoid system in peripheral lymphocytes as a
mirror of neuroinflammatory diseases. Curr. Pharm. Des. 2008, 14, 2370–2342. [CrossRef] [PubMed]

9. Pacher, P.; Ungvari, Z. Pleiotropic effects of the CB2 cannabinoid receptor activation on human monocyte
migration: Implications for atherosclerosis and inflammatory diseases. Am. J. Physiol. Heart Circ. Physiol.
2008, 294, H1133–H1134. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2016, 17, 230 6 of 10

10. Tomar, S.; E, E.Z.; Nagarkatti, M.; Nagarkatti, P.S. Protective role of cannabinoid receptor 2 activation
in galactosamine/lipopolysaccharide-induced acute liver failure through regulation of macrophage
polarization and microRNAs. J. Pharmacol. Exp. Ther. 2015, 353, 369–379. [CrossRef] [PubMed]

11. Ley, S.; Weigert, A.; Heriche, J.K.; Mille-Baker, B.; Janssen, R.A.; Brune, B. RNAi screen in apoptotic cancer
cell-stimulated human macrophages reveals co-regulation of IL-6/IL-10 expression. Immunobiology 2013,
218, 40–51. [CrossRef] [PubMed]

12. Ryberg, E.; Larsson, N.; Sjogren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.;
Drmota, T.; Greasley, P.J. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007,
152, 1092–1101. [CrossRef] [PubMed]

13. Henstridge, C.M.; Balenga, N.A.; Ford, L.A.; Ross, R.A.; Waldhoer, M.; Irving, A.J. The GPR55 ligand
L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J.
2009, 23, 183–193. [CrossRef] [PubMed]

14. Ford, L.A.; Roelofs, A.J.; Anavi-Goffer, S.; Mowat, L.; Simpson, D.G.; Irving, A.J.; Rogers, M.J.; Rajnicek, A.M.;
Ross, R.A. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation
and polarization of human breast cancer cells. Br. J. Pharmacol. 2010, 160, 762–771. [CrossRef] [PubMed]

15. Ross, R.A. The enigmatic pharmacology of GPR55. Trends Pharmacol. Sci. 2009, 30, 156–163. [CrossRef]
[PubMed]

16. Oka, S.; Nakajima, K.; Yamashita, A.; Kishimoto, S.; Sugiura, T. Identification of GPR55 as a
lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 2007, 362, 928–934. [CrossRef] [PubMed]

17. Boucharaba, A.; Serre, C.M.; Gres, S.; Saulnier-Blache, J.S.; Bordet, J.C.; Guglielmi, J.; Clezardin, P.;
Peyruchaud, O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases
in breast cancer. J. Clin. Investig. 2004, 114, 1714–1725. [CrossRef] [PubMed]

18. Fourcade, O.; Simon, M.F.; Viode, C.; Rugani, N.; Leballe, F.; Ragab, A.; Fournie, B.; Sarda, L.; Chap, H.
Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane
microvesicles shed from activated cells. Cell 1995, 80, 919–927. [CrossRef]

19. Peyruchaud, O. Novel implications for lysophospholipids, lysophosphatidic acid and sphingosine
1-phosphate, as drug targets in cancer. Anti-Cancer Agents Med. Chem. 2009, 9, 381–391. [CrossRef]

20. Leblanc, R.; Lee, S.C.; David, M.; Bordet, J.C.; Norman, D.D.; Patil, R.; Miller, D.; Sahay, D.; Ribeiro, J.;
Clezardin, P.; et al. Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls
metastasis of breast cancer cells to bone. Blood 2014, 124, 3141–3150. [CrossRef] [PubMed]

21. Fulkerson, Z.; Wu, T.; Sunkara, M.; Kooi, C.V.; Morris, A.J.; Smyth, S.S. Binding of autotaxin to integrins
localizes lysophosphatidic acid production to platelets and mammalian cells. J. Biol. Chem. 2011, 286,
34654–34663. [CrossRef] [PubMed]

22. Hama, K.; Aoki, J.; Fukaya, M.; Kishi, Y.; Sakai, T.; Suzuki, R.; Ohta, H.; Yamori, T.; Watanabe, M.; Chun, J.;
et al. Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells
through LPA1. J. Biol. Chem. 2004, 279, 17634–17639. [CrossRef] [PubMed]

23. Van Meeteren, L.A.; Ruurs, P.; Stortelers, C.; Bouwman, P.; van Rooijen, M.A.; Pradere, J.P.; Pettit, T.R.;
Wakelam, M.J.; Saulnier-Blache, J.S.; Mummery, C.L.; et al. Autotaxin, a secreted lysophospholipase D, is
essential for blood vessel formation during development. Mol. Cell. Biol. 2006, 26, 5015–5022. [CrossRef]
[PubMed]

24. Hiley, C.R.; Kaup, S.S. GPR55 and the vascular receptors for cannabinoids. Br. J. Pharmacol. 2007, 152,
559–561. [CrossRef] [PubMed]

25. Ligresti, A.; Bisogno, T.; Matias, I.; de Petrocellis, L.; Cascio, M.G.; Cosenza, V.; D’Argenio, G.; Scaglione, G.;
Bifulco, M.; Sorrentini, I.; et al. Possible endocannabinoid control of colorectal cancer growth. Gastroenterology
2003, 125, 677–687. [CrossRef]

26. Izzo, A.A.; Aviello, G.; Petrosino, S.; Orlando, P.; Marsicano, G.; Lutz, B.; Borrelli, F.; Capasso, R.; Nigam, S.;
Capasso, F.; et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the
mouse colon. J. Mol. Med. 2008, 86, 89–98. [CrossRef] [PubMed]

27. Ramer, R.; Hinz, B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue
inhibitor of matrix metalloproteinases-1. J. Natl. Cancer Inst. 2008, 100, 59–69. [CrossRef] [PubMed]

28. Grimaldi, C.; Pisanti, S.; Laezza, C.; Malfitano, A.M.; Santoro, A.; Vitale, M.; Caruso, M.G.; Notarnicola, M.;
Iacuzzo, I.; Portella, G.; et al. Anandamide inhibits adhesion and migration of breast cancer cells. Exp. Cell Res.
2006, 312, 363–373. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2016, 17, 230 7 of 10

29. Patsos, H.A.; Hicks, D.J.; Dobson, R.R.; Greenhough, A.; Woodman, N.; Lane, J.D.; Williams, A.C.;
Paraskeva, C. The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells:
A possible role for cyclooxygenase 2. Gut 2005, 54, 1741–1750. [CrossRef] [PubMed]

30. Joseph, J.; Niggemann, B.; Zaenker, K.S.; Entschladen, F. Anandamide is an endogenous inhibitor for the
migration of tumor cells and T lymphocytes. Cancer Immunol. Immunother. 2004, 53, 723–728. [CrossRef]
[PubMed]

31. Salazar, M.; Carracedo, A.; Salanueva, I.J.; Hernandez-Tiedra, S.; Lorente, M.; Egia, A.; Vazquez, P.;
Blazquez, C.; Torres, S.; Garcia, S.; et al. Cannabinoid action induces autophagy-mediated cell death
through stimulation of ER stress in human glioma cells. J. Clin. Investig. 2009, 119, 1359–1372. [CrossRef]
[PubMed]

32. Perez-Gomez, E.; Andradas, C.; Blasco-Benito, S.; Caffarel, M.M.; Garcia-Taboada, E.; Villa-Morales, M.;
Moreno, E.; Hamann, S.; Martin-Villar, E.; Flores, J.M.; et al. Role of cannabinoid receptor CB2 in HER2
pro-oncogenic signaling in breast cancer. J. Natl. Cancer Inst. 2015, 107, djv077. [CrossRef] [PubMed]

33. Constantin, C.E.; Mair, N.; Sailer, C.A.; Andratsch, M.; Xu, Z.Z.; Blumer, M.J.; Scherbakov, N.; Davis, J.B.;
Bluethmann, H.; Ji, R.R.; et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor
type 2 to generate heat hyperalgesia in a mouse cancer model. J. Neurosci. 2008, 28, 5072–5081. [CrossRef]
[PubMed]

34. Heyman, E.; Gamelin, F.X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; di Marzo, V.; Meeusen, R.
Intense exercise increases circulating endocannabinoid and BDNF levels in humans-Possible implications
for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [CrossRef] [PubMed]

35. Yin, H.; Chu, A.; Li, W.; Wang, B.; Shelton, F.; Otero, F.; Nguyen, D.G.; Caldwell, J.S.; Chen, Y.A. Lipid G
protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J. Biol. Chem. 2009, 284,
12328–12338. [CrossRef] [PubMed]

36. O’Sullivan, S.E. Cannabinoids go nuclear: Evidence for activation of peroxisome proliferator-activated
receptors. Br. J. Pharmacol. 2007, 152, 576–582. [CrossRef] [PubMed]

37. Van der Stelt, M.; Trevisani, M.; Vellani, V.; de Petrocellis, L.; Schiano Moriello, A.; Campi, B.; McNaughton, P.;
Geppetti, P.; di Marzo, V. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1
channels. Embo J. 2005, 24, 3026–3037. [CrossRef] [PubMed]

38. Bradshaw, H.B.; Lee, S.H.; McHugh, D. Orphan endogenous lipids and orphan GPCRs: A good match.
Prostaglandins Lipid Mediat. 2009, 89, 131–134. [CrossRef] [PubMed]

39. Endsley, M.P.; Thill, R.; Choudhry, I.; Williams, C.L.; Kajdacsy-Balla, A.; Campbell, W.B.; Nithipatikom, K.
Expression and function of fatty acid amide hydrolase in prostate cancer. Int. J. Cancer 2008, 123, 1318–1326.
[CrossRef] [PubMed]

40. Bishay, P.; Schmidt, H.; Marian, C.; Haussler, A.; Wijnvoord, N.; Ziebell, S.; Metzner, J.; Koch, M.; Myrczek, T.;
Bechmann, I.; et al. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids.
PLoS ONE 2010, 5, e10628. [CrossRef] [PubMed]

41. Schmitz, K.; de Bruin, N.; Bishay, P.; Mannich, J.; Haussler, A.; Altmann, C.; Ferreiros, N.; Lotsch, J.;
Ultsch, A.; Parnham, M.J.; et al. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in
mice. EMBO Mol. Med. 2014, 6, 1398–13422. [CrossRef] [PubMed]

42. Grosch, S.; Tegeder, I.; Schilling, K.; Maier, T.J.; Niederberger, E.; Geisslinger, G. Activation of
c-Jun-N-terminal-kinase is crucial for the induction of a cell cycle arrest in human colon carcinoma cells
caused by flurbiprofen enantiomers. FASEB J. 2003, 17, 1316–1318. [CrossRef] [PubMed]

43. Wechter, W.J.; Leipold, D.D.; Murray, E.D., Jr.; Quiggle, D.; McCracken, J.D.; Barrios, R.S.; Greenberg, N.M.
E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res. 2000, 60,
2203–2208. [PubMed]

44. Wechter, W.J.; Kantoci, D.; Murray, E.D., Jr.; Quiggle, D.D.; Leipold, D.D.; Gibson, K.M.; McCracken, J.D.
R-flurbiprofen chemoprevention and treatment of intestinal adenomas in the APC(Min)/+ mouse model:
Implications for prophylaxis and treatment of colon cancer. Cancer Res. 1997, 57, 4316–4324. [PubMed]

45. Fowler, C.J. Possible involvement of the endocannabinoid system in the actions of three clinically used drugs.
Trends Pharmacol. Sci. 2004, 25, 59–61. [CrossRef] [PubMed]

46. Guzman, M.; Lo Verme, J.; Fu, J.; Oveisi, F.; Blazquez, C.; Piomelli, D. Oleoylethanolamide stimulates
lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha).
J. Biol. Chem. 2004, 279, 27849–27854. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2016, 17, 230 8 of 10

47. Schwartz, G.J.; Fu, J.; Astarita, G.; Li, X.; Gaetani, S.; Campolongo, P.; Cuomo, V.; Piomelli, D. The lipid
messenger OEA links dietary fat intake to satiety. Cell Metab. 2008, 8, 281–288. [CrossRef] [PubMed]

48. Rodriguez de Fonseca, F.; Navarro, M.; Gomez, R.; Escuredo, L.; Nava, F.; Fu, J.; Murillo-Rodriguez, E.;
Giuffrida, A.; LoVerme, J.; Gaetani, S.; et al. An anorexic lipid mediator regulated by feeding. Nature 2001,
414, 209–212. [CrossRef] [PubMed]

49. Soria-Gomez, E.; Guzman, K.; Pech-Rueda, O.; Montes-Rodriguez, C.J.; Cisneros, M.; Prospero-Garcia, O.
Oleoylethanolamide affects food intake and sleep-waking cycle through a hypothalamic modulation.
Pharmacol. Res. 2010, 61, 379–384. [CrossRef] [PubMed]

50. Parolaro, D.; Massi, P.; Rubino, T.; Monti, E. Endocannabinoids in the immune system and cancer.
Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 319–332. [CrossRef] [PubMed]

51. Bradshaw, H.B.; Rimmerman, N.; Hu, S.S.; Benton, V.M.; Stuart, J.M.; Masuda, K.; Cravatt, B.F.; O’Dell, D.K.;
Walker, J.M. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonyl glycine
through two distinct pathways. BMC Biochem. 2009, 10, 14. [CrossRef] [PubMed]

52. Burstein, S.H.; Huang, S.M.; Petros, T.J.; Rossetti, R.G.; Walker, J.M.; Zurier, R.B. Regulation of anandamide
tissue levels by N-arachidonylglycine. Biochem. Pharmacol. 2002, 64, 1147–1150. [CrossRef]

53. McHugh, D.; Wager-Miller, J.; Page, J.; Bradshaw, H.B. siRNA knockdown of GPR18 receptors in BV-2
microglia attenuates N-arachidonoyl glycine-induced cell migration. J. Mol. Signal. 2012, 7, 10. [CrossRef]
[PubMed]

54. McHugh, D.; Page, J.; Dunn, E.; Bradshaw, H.B. Delta(9)-Tetrahydrocannabinol and N-arachidonyl
glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells.
Br. J. Pharmacol. 2012, 165, 2414–2424. [CrossRef] [PubMed]

55. Grazia Cascio, M.; Minassi, A.; Ligresti, A.; Appendino, G.; Burstein, S.; Di Marzo, V. A structure-activity
relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide
hydrolase. Biochem. Biophys. Res. Commun. 2004, 314, 192–196. [CrossRef] [PubMed]

56. Velasco, G.; Sanchez, C.; Guzman, M. Endocannabinoids and Cancer. Handb. Exp. Pharmacol. 2015, 231,
449–472. [PubMed]

57. Pisanti, S.; Picardi, P.; D’Alessandro, A.; Laezza, C.; Bifulco, M. The endocannabinoid signaling system in
cancer. Trends Pharmacol. Sci. 2013, 34, 273–282. [CrossRef] [PubMed]

58. Chakravarti, B.; Ravi, J.; Ganju, R.K. Cannabinoids as therapeutic agents in cancer: Current status and future
implications. Oncotarget 2014, 5, 5852–5872. [CrossRef] [PubMed]

59. Bifulco, M.; Laezza, C.; Gazzerro, P.; Pentimalli, F. Endocannabinoids as emerging suppressors of
angiogenesis and tumor invasion (review). Oncol. Rep. 2007, 17, 813–816. [CrossRef] [PubMed]

60. Caffarel, M.M.; Andradas, C.; Mira, E.; Perez-Gomez, E.; Cerutti, C.; Moreno-Bueno, G.; Flores, J.M.;
Garcia-Real, I.; Palacios, J.; Manes, S.; et al. Cannabinoids reduce ErbB2-driven breast cancer progression
through Akt inhibition. Mol. Cancer 2010, 9, 196. [CrossRef] [PubMed]

61. Vara, D.; Salazar, M.; Olea-Herrero, N.; Guzman, M.; Velasco, G.; Diaz-Laviada, I. Anti-tumoral
action of cannabinoids on hepatocellular carcinoma: Role of AMPK-dependent activation of autophagy.
Cell Death Differ. 2011, 18, 1099–1111. [CrossRef] [PubMed]

62. Laezza, C.; Pisanti, S.; Crescenzi, E.; Bifulco, M. Anandamide inhibits Cdk2 and activates Chk1 leading to
cell cycle arrest in human breast cancer cells. FEBS Lett. 2006, 580, 6076–6082. [CrossRef] [PubMed]

63. Gustafsson, S.B.; Lindgren, T.; Jonsson, M.; Jacobsson, S.O. Cannabinoid receptor-independent
cytotoxic effects of cannabinoids in human colorectal carcinoma cells: Synergism with 5-fluorouracil.
Cancer Chemother. Pharmacol. 2009, 63, 691–701. [CrossRef] [PubMed]

64. Theocharis, S.; Giaginis, C.; Alexandrou, P.; Rodriguez, J.; Tasoulas, J.; Danas, E.; Patsouris, E.; Klijanienko, J.
Evaluation of cannabinoid CB1 and CB2 receptors expression in mobile tongue squamous cell carcinoma:
Associations with clinicopathological parameters and patients’ survival. Tumour Biol. 2015, 1–10. [CrossRef]
[PubMed]

65. Chung, S.C.; Hammarsten, P.; Josefsson, A.; Stattin, P.; Granfors, T.; Egevad, L.; Mancini, G.; Lutz, B.;
Bergh, A.; Fowler, C.J. A high cannabinoid CB(1) receptor immunoreactivity is associated with disease
severity and outcome in prostate cancer. Eur. J. Cancer 2009, 45, 174–182. [CrossRef] [PubMed]

66. Orellana-Serradell, O.; Poblete, C.E.; Sanchez, C.; Castellon, E.A.; Gallegos, I.; Huidobro, C.; Llanos, M.N.;
Contreras, H.R. Proapoptotic effect of endocannabinoids in prostate cancer cells. Oncol. Rep. 2015, 33,
1599–1608. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2016, 17, 230 9 of 10

67. Preet, A.; Qamri, Z.; Nasser, M.W.; Prasad, A.; Shilo, K.; Zou, X.; Groopman, J.E.; Ganju, R.K. Cannabinoid
receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis.
Cancer Prev. Res. 2011, 4, 65–75.

68. Qamri, Z.; Preet, A.; Nasser, M.W.; Bass, C.E.; Leone, G.; Barsky, S.H.; Ganju, R.K. Synthetic cannabinoid
receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol. Cancer Ther. 2009, 8, 3117–3329.
[PubMed]

69. Morales, P.; Blasco-Benito, S.; Andradas, C.; Gomez-Canas, M.; Flores, J.M.; Goya, P.; Fernandez-Ruiz, J.;
Sanchez, C.; Jagerovic, N. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against
triple-negative breast cancer. J. Med. Chem. 2015, 58, 2256–2264. [CrossRef] [PubMed]

70. Overton, H.A.; Babbs, A.J.; Doel, S.M.; Fyfe, M.C.; Gardner, L.S.; Griffin, G.; Jackson, H.C.; Procter, M.J.;
Rasamison, C.M.; Tang-Christensen, M.; et al. Deorphanization of a G protein-coupled receptor for
oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006, 3,
167–175. [PubMed]

71. Godlewski, G.; Offertaler, L.; Wagner, J.A.; Kunos, G. Receptors for acylethanolamides-GPR55 and GPR119.
Prostaglandins Lipid Mediat. 2009, 89, 105–111.

72. Pang, X.; Wei, Y.; Zhang, Y.; Zhang, M.; Lu, Y.; Shen, P. Peroxisome proliferator-activated receptor-gamma
activation inhibits hepatocellular carcinoma cell invasion by upregulating plasminogen activator inhibitor-1.
Cancer Sci. 2013, 104, 672–680. [CrossRef] [PubMed]

73. Apostoli, A.J.; Skelhorne-Gross, G.E.; Rubino, R.E.; Peterson, N.T.; Di Lena, M.A.; Schneider, M.M.;
Sengupta, S.K.; Nicol, C.J. Loss of PPARgamma expression in mammary secretory epithelial cells creates
a pro-breast tumorigenic environment. Int. J. Cancer 2013, 134, 1055–1066. [CrossRef] [PubMed]

74. Pignatelli, M.; Cortes-Canteli, M.; Lai, C.; Santos, A.; Perez-Castillo, A. The peroxisome proliferator-activated
receptor gamma is an inhibitor of ErbBs activity in human breast cancer cells. J. Cell Sci. 2001, 114, 4117–4126.
[PubMed]

75. Nomura, D.K.; Lombardi, D.P.; Chang, J.W.; Niessen, S.; Ward, A.M.; Long, J.Z.; Hoover, H.H.; Cravatt, B.F.
Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support
prostate cancer. Chem. Biol. 2011, 18, 846–856. [CrossRef] [PubMed]

76. Hu, W.R.; Lian, Y.F.; Peng, L.X.; Lei, J.J.; Deng, C.C.; Xu, M.; Feng, Q.S.; Chen, L.Z.; Bei, J.X.; Zeng, Y.X.
Monoacylglycerol lipase promotes metastases in nasopharyngeal carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7,
3704–3713. [PubMed]

77. Takeda, S.; Yamaori, S.; Motoya, E.; Matsunaga, T.; Kimura, T.; Yamamoto, I.; Watanabe, K.
Delta(9)-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent
signaling. Toxicology 2008, 245, 141–146. [CrossRef] [PubMed]

78. Di Marzo, V.; Melck, D.; Orlando, P.; Bisogno, T.; Zagoory, O.; Bifulco, M.; Vogel, Z.; de Petrocellis, L.
Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the
anti-proliferative effect of anandamide in human breast cancer cells. Biochem. J. 2001, 358, 249–255. [CrossRef]
[PubMed]

79. Thors, L.; Bergh, A.; Persson, E.; Hammarsten, P.; Stattin, P.; Egevad, L.; Granfors, T.; Fowler, C.J. Fatty acid
amide hydrolase in prostate cancer: Association with disease severity and outcome, CB1 receptor expression
and regulation by IL-4. PLoS ONE 2010, 5, e12275. [CrossRef] [PubMed]

80. Nomura, D.K.; Long, J.Z.; Niessen, S.; Hoover, H.S.; Ng, S.W.; Cravatt, B.F. Monoacylglycerol lipase regulates
a fatty acid network that promotes cancer pathogenesis. Cell 2010, 140, 49–61. [CrossRef] [PubMed]

81. Sun, H.; Jiang, L.; Luo, X.; Jin, W.; He, Q.; An, J.; Lui, K.; Shi, J.; Rong, R.; Su, W.; et al. Potential
tumor-suppressive role of monoglyceride lipase in human colorectal cancer. Oncogene 2013, 32, 234–241.
[CrossRef] [PubMed]

82. Fowler, C.J. Delta(9)-tetrahydrocannabinol and cannabidiol as potential curative agents for cancer: A critical
examination of the preclinical literature. Clin. Pharmacol. Ther. 2015, 97, 587–596. [CrossRef] [PubMed]

83. Torres, S.; Lorente, M.; Rodriguez-Fornes, F.; Hernandez-Tiedra, S.; Salazar, M.; Garcia-Taboada, E.; Barcia, J.;
Guzman, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma.
Mol. Cancer Ther. 2011, 10, 90–103. [CrossRef] [PubMed]

84. Hernan Perez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; Garcia-Taboada, E.; Aberturas Mdel, R.;
Molpeceres, J.; Velasco, G.; Torres-Suarez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits
tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS ONE 2013, 8, e54795. [CrossRef]



Int. J. Mol. Sci. 2016, 17, 230 10 of 10

85. Armstrong, J.L.; Hill, D.S.; McKee, C.S.; Hernandez-Tiedra, S.; Lorente, M.; Lopez-Valero, I.;
Eleni Anagnostou, M.; Babatunde, F.; Corazzari, M.; Redfern, C.P.; et al. Exploiting cannabinoid-induced
cytotoxic autophagy to drive melanoma cell death. J. Investig. Dermatol. 2015, 135, 1629–1637. [CrossRef]
[PubMed]

86. Johnson, J.R.; Lossignol, D.; Burnell-Nugent, M.; Fallon, M.T. An open-label extension study to investigate
the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients
with terminal cancer-related pain refractory to strong opioid analgesics. J. Pain Symptom Manag. 2013, 46,
207–218. [CrossRef] [PubMed]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


